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Abstract—Our proposed music-to-dance framework, Bailando++, addresses the challenges of driving 3D characters to dance in a way
that follows the constraints of choreography norms and maintains temporal coherency with different music genres. Bailando++ consists of
two components: a choreographic memory that learns to summarize meaningful dancing units from 3D pose sequences, and an
actor-critic Generative Pre-trained Transformer (GPT) that composes these units into a fluent dance coherent to the music. In particular,
to synchronize the diverse motion tempos and music beats, we introduce an actor-critic-based reinforcement learning scheme to the GPT
with a novel beat-align reward function. Additionally, we consider learning human dance poses in the rotation domain to avoid body
distortions incompatible with human morphology, and introduce a musical contextual encoding to allow the motion GPT to grasp
longer-term patterns of music. Our experiments on the standard benchmark show that Bailando++ achieves state-of-the-art performance
both qualitatively and quantitatively, with the added benefit of the unsupervised discovery of human-interpretable dancing-style poses in
the choreographic memory. Code and video demo are available at https://github.com/lisiyao21/Bailando/.
Index Terms—Dance Generation, Multi-modal, 3D Human Motion, VQ-VAE, GPT
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House dance: energetic up-down Middle hip-hop: casual steps

Ballet jazz: pirouetteBreaking: facile toprock

Fig. 1: Dance examples generated by our proposed method on various types of music. The character is from Mixamo [1]

1 INTRODUCTION

THE task of generating 3D dance sequences that are condi-
tioned on music has practical significance for various real-

world applications, such as helping human artists to choreograph
and driving the performance of virtual avatars. However, it is still
very challenging to produce a satisfactory dancing sequence for a
given piece of music due to two main challenges: 1) The spatial
quality constraint: not all physically feasible 3D human poses
are suitable for dancing. The subset of poses that are suitable for
dancing must meet stricter positional standards and be visually
expressive and emotionally infectious based on the norms of
choreography. 2) Temporal coherency with the music: the generated
dancing sequence must be consistent with the rhythm of the music
across various genres of beats while maintaining fluidity in the
overall movements.

Many existing approaches to dance generation aim to address
both of the aforementioned challenges in a single network that
directly maps music to a high-dimensional, continuous space of 3D
joint sequences [2], [3], [4], [5], [6], [7]. However, such methods
often suffer from instability in practice and are prone to producing
nonstandard poses that fall outside the dancing subspace, such
as freezing or meaningless swaying, due to the lack of explicit

constraints on the target domain to ensure spatial quality. To address
this issue, some studies collect real dancing clips as dance units
and choreograph them by splicing these units together [8], [9].
While this approach guarantees the spatial quality of the generated
dance by directly manipulating human-recorded data, it requires
a significant amount of manual work to collect the dance units
and is not compatible with different rhythms. Additionally, the
fixed length and speed of the units make them incompatible with
different kinds of music beats.

To address the limitations of current dance generation methods,
we propose a novel framework called Bailando++ that consists of
two main components designed to address the spatial and temporal
challenges, respectively:

(1) First, to address the spatial challenge, we create a finite
dictionary of quantized dancing units, known as the choreographic
memory, which summarizes the fundamental and reusable com-
ponents of movements in the dancing-style subspace. Rather than
manually selecting these dance units, we use VQ-VAE [10] to
encode and quantize 3D joint sequences in an unsupervised manner,
resulting in a codebook where each learned code represents a
unique dancing pose. To further increase the range of poses that
the choreographic memory can represent, we divide 3D poses

https://github.com/lisiyao21/Bailando/
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Fig. 2: Dance generation pipeline of Bailando++. Given a piece of music, an actor-critic motion GPT autoregressively predicts the
future upper-lower pose code pairs according to the music features and starting pose codes. The pose code sequence is then embedded to
quantized features via a learned choreographic memory and finally decoded into a dance sequence by a CNN-based decoder.

into compositional upper and lower halves of the body and learn
separate VQ-VAEs for each half. This allows any piece of dance to
be represented as a sequence of paired pose codes.
(2) Second, to generate temporally harmonious dance sequences,
we introduce a GPT-like [11] network called motion GPT that
translates music and source pose codes into targeted future pose
codes. Since the 3D poses are divided into compositional half-
bodies in the choreographic memory, we enhance our motion
GPT with a proposed cross-conditional causal attention layer
to maintain the coherence of the generated body. Additionally,
to achieve accurate temporal synchronization between diverse
motion tempos and music beats, we use an on-policy reinforcement
learning scheme to further improve the performance of motion
GPT through actor-critic [12] finetuning with a newly designed
beat-align reward function.

The procedure for inferring dance sequences using Bailando++
is illustrated in Figure 2. Given a piece of music and a starting
pose code pair, the actor-critic GPT autoregressively predicts a
sequence of future pose codes. These pose codes are then mapped
to corresponding quantized features in the choreographic memory
and decoded into a 3D dance sequence using dedicated CNN-based
decoders of the learned pose VQ-VAE.

An earlier version (CVPR 2022, oral) of this work appears
in Siyao et al. [13]. In the original Bailando, choreography is
performed in the domain of 3D joint positions, which leads to two
issues when mapping the generated dance sequence to an avatar
character. First, the 3D joint positions must be transformed into
rotation angles using inverse kinematics (IK) [14], which increases
the workload for avatar animation and can introduce errors due
to rotational ambiguity (i.e., one set of joint positions may have
multiple rotational solutions) or mismatched bone lengths between
the source model and the target avatar. As shown in Figure 3(a),
when using the original Bailando to drive the Mixamo character [1]
to kneel, the feet are bent unnaturally (as indicated by the blue box)
after IK. Second, since the generated 3D points have no explicit
morphological constraints, the original Bailando may result in body
distortions that are incompatible with human physiology, such as
inconsistent orientations of the upper and lower body (as indicated
by the red box in Figure 3(a)).

To address these issues, we have upgraded Bailando to generate
3D dance sequences in the domain of joint rotation angles, which
are more suitable for avatar animation. Specifically, we generate
dancing sequences of joint angles in SPML format [15], which can
be directly applied to drive 3D avatars without the need for IK.

Since SMPL joint angles are organized in a hierarchical structure
(i.e., a joint angle in SMPL format only defines the local rotation
of that joint), the orientations of both the upper and lower body
are consistent with the direction of the global root (the “Pelvis”),
which helps to avoid unreasonable distortions.

The aforementioned improvement cannot be achieved by simply
substituting the training data from 3D positions to the SMPL format.
As we will discuss in Section 3.2, the hierarchical structure of the
SMPL model means that poses that appear different in 3D position
space may have little difference when expressed in the rotation
domain. For example, when an agent performs a fouette turn (a
ballet movement involving spinning in place), the 3D joint positions
in different directions are distinct, but the corresponding SMPL
expressions are very similar because most joint angles remain the
same except for the global root. This ambiguity makes it more
difficult for VQ-VAE to summarize spatially representative poses
from dance data in the rotation domain, which reduces the space
that the choreographic memory can represent and leads to poor
performance overall.

To address this problem, we propose a hybrid training strategy
for the pose VQ-VAEs that collectively learn from both the 3D
position and rotation domains. Specifically, we train a VQ-VAE to
quantize pose codes from the 3D position domain and decode them
into SMPL format sequences. This strategy not only ensures the
spatial representation of the choreographic memory, but also takes
advantage of morphological constraints, resulting in higher quality
dance generation than models trained solely on 3D rotation data.
In addition, we propose a contextual music encoding to improve
Bailando’s ability to process music features over a longer period of
time and produce smoother dance movements. These improvements,
along with the other features of Bailando++, make it more effective
on the AIST++ standard benchmark than the performance reported
by Siyao et al. [13].

In summary, our work makes the following contributions: 1)
We create a choreographic memory to encode and quantize dancing-
style 3D poses using VQ-VAE in an unsupervised manner. 2) We
introduce an actor-critic GPT, incorporated with the choreographic
memory and cross-conditional causal attention, to align diverse
motion tempos with different genres of music beats. 3) We propose
a hybrid training strategy that allows the proposed pipeline to
generate 3D rotation outputs while maintaining high spatial quality.
4) We introduce a musical contextual encoding to capture long-
term music patterns. Extensive experiments show that our proposed
Bailando++ significantly outperforms existing state-of-the-art
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Fig. 3: Comparison between Bailando and Bailando++. Here we present two examples where the avatar (a) kneels and (b) turn around.
Errors that disobey the human morphology occur in avatar animation of the original Bailando (blue and red box). The inverse kinematics
that transfer the 3D positions to 3D joint rotations of the original Bailando is conducted under the computer graphics software Unity.

approaches both quantitatively and qualitatively. In comparison to
the original Bailando [13], this version adds the hybrid training
strategy and contextual music encoding for improved performance
and practical use. Ablation studies are added to demonstrate the
effectiveness of the new components. The supplementary video can
refer to https://youtu.be/jht6NpwqLM4.

2 RELATED WORK

2.1 Graph-based Motion Synthesis and Music to Dance

Producing realistic human motions has been long studied. A typical
class of approaches is graph-based methods. They are developed
on the idea of “cropping and pasting”, which cut motion clips
from existing data as individual nodes and splice these nodes
to synthesize new motions according to proper rules [16], [17],
[18], [19]. For music to dance, further constraints on the music
rhythms, including source-target music similarity [20], beat-wise
motion connectivity [21], and deep rhythm signatures [9], are
introduced into the linking rules of the graph-based methods to
align the motion with music beats. However, since the tempos,
length, and speed of the cropped dance units are fixed, the graph-
based methods would encounter temporal conflicts on diverse
rhythms. For example, the dance units cropped in music of 4/4 time
signature cannot synthesize movement for 3/4, while the motion
tempos of 60 beats per minute (BPM) is not adaptable for 80 BPM.
As a result, this kind of works can perform well in restricted rhythm
ranges but is not compatible with various genres of music beats in
wild scenarios.

2.2 Learning-based Dance Generation

In recent years, with the emergence of deep learning, many works
design a dedicated network structure, including CNNs [22], RNNs
[2], [4], [23], [24], GCNs [25], [26], [27], GANs [28], [29] and
Transformers [7], [30], [31], to map the given music to a joint
sequence of the continuous human pose space directly. Specifically,
Holden et al. [22] exploit an convolutional-network-(CNN)-based
autoencoder to learn a deep representation of human motion and
learn an additional stacked network to map control signals to the
learned representation for motion synthesis. Alemi et al. [2] apply

Factored Conditional Restricted Boltzmann Machine (FCRBM) to
recurrently predict next motion frame with the concatenation of
history motion and future music as input, while Tang et al. train
a Long Short-Term Memory (LSTM) [32]-based autoencoder to
extract music features and feed the encoded features to another
LSTM to generate motions. Yan and Li et al. [25] propose to
generate dance sequences via skeleton-based graph convolutions
and graph upsamplings from sampled latent vectors in Gaussian
process. Ren et al. [26] use a spatio-temporal graph convolutional
network to map the music features encoded by GRU to skeleton
sequences, supervised with a generative adversarial loss [33],
while Sun et al. [29] also conduct an adversarial loss to train a
mapping network composed of mixed CNNs and LSTMs. Recently,
along with the development of Transformer [34], many works
try to integrate the attention-based structure into music-to-dance
mapping networks. Huang et al. [24] apply a Transformer-based
music encoder to get long-range audio features that are fed to a
subsequent LSTM for iterative pose generation. Li and Yang et
al. [7] employ two Transformers to separately encode the music
features and the historic motion features and autoregressively
predict the future pose via a third cross-modal Transfomer. Li et
al. [31] design a Transformer with attention layers specific for the
hierarchical connections of skeleton and apply the Transformers
to separately predict the key poses in 3D joint rotation format
and connecting curves among key poses. Although these methods
exploits diverse network structures, they share the same core routine
that directly mapping the music features to 3D joint pose sequence
in a discriminative manner. Due to lacking explicit restrictions to
keep the generated pose within the spatial constraint, such methods
would regress to nonstandard poses that are beyond the dancing
subspace during inference, resulting in instability in real uses.
In recent studies, there has been exploration into generating 3D
motions using denoising diffusion probabilistic models (DDPM)
[35], [36], [37] One notable work in this area is EDGE [37],
which also uses a Transformer as the decoder backbone. Different
from other Transformer-based methods, EDGE generates dance
motions by iteratively reconstructing pose pieces of fixed length
from Gaussian noises. These generated motion pieces are then
stitched together to form long sequences, with the constraint that
the first half of each piece aligns with the second half of the

https://youtu.be/jht6NpwqLM4
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Fig. 4: Structure of 3D Pose VQ-VAE. The proposed 3D pose VQ-VAE is learned to encode and summarize meaningful dancing units
to choreographic memory, and to reconstruct the target pose sequence from quantized features. The parameters of encoder and decoders
and the codebook are jointly learned during training.

previous piece.
Besides various kinds of methods, different 3D dancing

sequence data are made from mocap and reconstruction [2], [4],
[38]. Recently, a large-scale 3D dancing dataset AIST++ [7] is
built from multi-camera videos along with the music in different
styles and speeds, facilitating both training and testing of this task.

2.3 Two-stage Generation using VQ-VAE and GPT

The two-stage approaches, which first encode data using VQ-VAE
and afterwards learn a probabilistic model (GPT) to generate the
encoding from quantized codebook, have been applied in multiple
generative areas [39], [40], [41]. For example, Dhariwal et al. [39]
extracts audio features and generate songs according to the lyrics,
while most recently Esser et al. [41] encode perceptually rich image
constituents to quantized patches and tames the Transformer to
generate contextually plausible images in large resolutions. In our
work, we encode and quantize meaningful dancing constituents
into a choreographic memory and generate visually satisfactory
dance by jointly translating the music and existing movements to
targeted future poses.

3 OUR APPROACH

The overview of our dance generation framework, Bailando++,
is shown in Figure 2. Unlike other learning-based methods,
we do not learn a direct mapping from audio features to the
continuous domain of 3D joint sequence. Instead, we first encode
and quantize the spatially standard dance movements into a finite
codebook Z = {zi}N−1

i=0 as choreographic memory in Section 3.1,
where N is the codebook length and every code zi is shown to
represent a dancing-like pose with contextual semantic information.
Specifically, we learn VQ-VAEs on the upper and lower half bodies
separately and represent the dance movement into a sequence
of compositional upper-and-lower pose code pairs p = [pu, pl].
In light of the benefits of dance generation in the 3D rotation

domain, we further apply the pose VQ-VAE to synthesize motion
in SMPL [15] format. However, poses expressed in the 3D rotation
format do not have as sufficient distinguishability as those in spatial
distribution, and hence it is not feasible to summarize spatially
representative movements from unsupervised training of VQ-VAE
on rotation data. Therefore, we propose a hybrid training strategy to
make 3D joint positions a strong spatial prior of motion synthesis
on rotation angles in Section 3.2. With the learned VQ-VAE,
we train networks to choreograph from input music signals to
summarized quantize codes in choreographic memory. First, we
apply an attention-based contextual music encoder to augment the
contextual input audio features within a sliding window in Section
3.4. Then, we introduce a motion GPT to translate the music feature
and source pose codes to the future pose codes in Section 3.3.
Furthermore, to achieve synchronized alignment between generated
motion tempos and music beats, we propose actor critic learning
on the motion GPT with our newly designed beat-align rewards in
Section 3.5. The generated pose code sequences are finally decoded
to fluent 3D dance by VQ-VAE decoders.

3.1 3D Pose VQ-VAE with Choreographic Memory
Dance positions, i.e., the meaningful poses in dancing movements,
are the basic constituents of a piece of dance. The process of
choreography can be regarded as the combinations and connections
of dance positions. Although dances vary greatly in style or
speed, they share common dance positions. Instead of indicating
fixed units of dance with plenty of manual effort, our goal is
to summarize such dance positions into a rich and reusable
codebook in an unsupervised manner, such that any piece of dance
P ∈ RT×(J×3), where T is the time length and J is the number
of human joints, can be represented by a sequence of codebook
elements eq ∈ RT ′×C , where T ′ = T/d, d is the temporal
down-sampling rate, and C is the channel dimension of features.

To collect distinctive pose codes and reconstruct them back
to represented dancing sequence efficiently, we design a 3D pose
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loss LCE with ground truth and actor-critic loss LAC .

VQ-VAE as shown in Figure 4. In this scheme, we first adopt a 1D
temporal convolution network E to encode the 3D joint sequence
P to context-aware features e ∈ RT ′×C .

Then, we quantize e by substituting each temporal feature ei
to its closest codebook element zj as

eq,i = arg min
zj∈Z

∥ei − zj∥. (1)

Finally, we decode the quantized features eq via a CNN DP and
reconstruct the dance movement P̂ .
Compositional Human Pose Representation. In order to represent
a larger range of motions by training on limited dance data, we train
independent 3D pose VQ-VAEs and learn two separate codebooks
Zu and Z l for the upper and lower half bodies, respectively,
such that we can combine different upper-lower code pairs to
enlarge the range of dance positions that the learned codebooks can
cover. Meanwhile, to avoid encoding confusion caused by a global
shift of joints (e.g., the same motion may be encoded to different
features when it is at different locations), we normalize the absolute
locations of input P , i.e., setting the root joints (hips) to be 0. To
realize the overall movement, we add a separate decoder branch
DV , which predicts the global movement velocity V̂ ∈ RT×3

according to pose codes of the lower half body, where V̂t represents
the shift of root joint between the (t+ 1)-th and the t-th frames.
Learning Stable 3D Pose VQ-VAEs. The pose encoder E and
decoder DP are simultaneously learned with the codebook via the
following loss function:

LV Q = Lrec(P̂ , P ) + ∥sg[e]− eq∥+ β∥e− sg[eq]∥. (2)

The global velocity decoder branch is learned thereafter by fixing
the parameters of other parts of VQ-VAE via loss function
Lrec(V̂ , V ), where V is the ground truth global velocity. Lrec

is the reconstruction loss that constrains the predicted 3D joint
sequence to ground truth. In this loss, we regress not only the
original 3D points of joints, but also the velocities and accelerations
of movements:

Lrec(P̂ , P ) = ∥P̂−P∥1+α1∥P̂ ′−P ′∥1+α2∥P̂ ′′−P ′′∥1, (3)

where P ′ and P ′′ represent the 1st-order (velocity) and 2nd-order
(acceleration) partial derivatives of 3D joint sequence P on time,
while α1 and α2 are trade-off weights. Experimental results show
that “velocity-and-acceleration” loss items play essential roles
in preventing jitters in generated dance. (See Section 4.2.) The
second part of LV Q is the “codebook loss” to learn codebook
entries, where sg[·] denotes “stop gradient” [42], while the third
part is the “commitment loss” with trade off β [39], [41]. Since
the quantization operation of Equation 2 is not differentiable, to
train the whole networks end to end, the back-propagation of this
operation is achieved by simply passing the gradient of eq to e. The
training process with LV Q achieves two learning objectives. First,
it involves learning an encoder-decoder pair that can effectively
represent the motion sequence to temporal deep features and
reconstruct it from the feature space, using the unsupervised loss
Lrec, akin to a typical autoencoder. Simultaneously, a group of
principle motion components in deep feature space are summarized
to codebook Z = {zi}, i.e. the choreographic memory, during the
training process. This is achieved through the combined effect of
the “codebook loss” and the “commit loss”, which encourage the
encoding feature e to converge towards its most similar codebook
element zi, and vice versa. Over repeated iterations of the training
data, similar encoding features are clustered together to form typical
and reusable components that effectively represent the high-quality
dance motion domain.

The learned choreographic memory codes are interpretable.
After the training process of pose VQ-VAEs, each quantized feature
in the codebook is decoded into a unique dance position. And any
permutation and combination of codes can be decoded into a piece
of fluent movement based on corresponding dance positions. (See
Section 4.3.)

3.2 A Hybrid Training Strategy for 3D Rotation

Generating dance in 3D joint rotation format rather than 3D
positions has several advantages, such as the ability to drive
avatar animation without additional inverse kinetics operations
and the avoidance of mapping errors like morphological distortions
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(see Figure 3). However, as we will demonstrate below, it is not
feasible to directly train VQ-VAE on rotation data using the method
described in Section 3.1.

If we look closely at the quantization step (described in
Equation 2) of the pose VQ-VAE, we can see that an input motion
feature, e, is transformed into a template feature, z, with the
smallest distance to e in the codebook. In other words, motion
features that are similar tend to be clustered into the same pose code
in VQ-VAE. Therefore, when training on 3D joint position data,
spatially similar dancing components will be clustered together,
while those that are visually distinct will be summarized into
different pose codes. As a result, even though the learning process
is unsupervised, VQ-VAE is still able to construct spatially diverse
and standard dancing units from 3D position data, which contributes
to the high performance of Bailando.

The distance between poses, however, is not the same in 3D
physical space when expressed in 3D rotation format. Poses that
appear to change significantly in 3D position space may have a
small distance in the 3D rotation format. One reason for this is that
the rotation format, such as SMPL, uses a hierarchical structure
of joint angles, meaning that the rotation angle of each joint only
represents the local rotation of its inherited bones relative to that
joint. As a result, poses that only change a few joints (such as
bending over or spinning in place) have only a small portion that
is different, and tend to be clustered into the same pose code
when training the VQ-VAE, even though they can be significantly
different in 3D space. This leads to these spatially distinct dancing
components being summarized into a single dancing unit, reducing
the diversity of motions that the choreographic memory can
represent. Meanwhile, according to Equation 7, the pose codes will
regress to an average of the clustered movements. Since VQ-VAE
may summarize distinct poses into a single cluster, the averaged
motion manifold is not guaranteed to represent a spatially standard
dancing movement. These factors lead to poor performance of the
pose VQ-VAE when trained solely on rotation data, and therefore
result in low-quality choreographic results, as shown in Section 4.2.
Hybrid Training Strategy. To address the issue of inconsistent
distances in the rotation data, we use 3D joint positions as a prior
that ensures the spatial diversity and quality of the learned dancing
units in the choreographic memory. Specifically, we train the full
pose VQ-VAE using the following steps: (1) we train the pose
VQ-VAE, including the pose encoder E, the codebook Z , and the
pose decoder D, using 3D joint position data P . (2) We freeze the
encoder and codebook and train the global velocity decoder DV

to predict the global shift V . (3) We freeze E and Z , and train
the rotation angle decoder DA by reconstructing the 3D rotation

angles A from the 3D positions P . We use the rotation matrix of
SMPL joint angles, as it has been shown to be more stable in Li et
al. [7]. Mapping pose codes of 3D joint positions is beneficial for
two reasons: 1) a pose code represents a 3D dancing pose, and
2) a 3D joint position motion sequence P corresponds to that in
joint angles A. Under this training strategy, the learned VQ-VAE
maintains spatial quality while synthesizing dance movements in
rotation format (see Section 4).
Learning a Stable Joint Angle Decoder. When training the joint
angle decoder DA, we use the following loss function:

LA = ∥Â−A∥1 + α1∥Â′ −A′∥1 + α2∥Â′′ −A′′∥1, (4)

where Â is the reconstructed 3D joint rotation angles and A is the
ground truth. In our experiments, we observe that the constraints
of the first-order and second-order derivatives (i.e., A′ and A′′) are
still effective to suppress the motion jitters when applied through
training on 3D rotation data (see Section 4.2).

3.3 Cross-Conditional Motion GPT
Now that we can represent any piece of dance by a sequence
of quantized position codes, the dance generation task is then
reframed to select proper codes from codebook Z for future actions
according to given music and existing movements. For any target
time t, we estimate the probability of every zi ∈ Z and select
the one with the largest possibility as the predicted pose code p̂t.
Since we model the upper and lower half bodies separately, in
order to keep the coherence of the composed body and to avoid
the asynchronous situation (e.g., the direction of the upper half is
opposite to that of the lower), the prediction of the future action
should be cross-conditioned between existing upper and lower
movements to make the most of mutual information:{

p̂ut = argmaxk P(zuk |m1...t, p
u
0...t−1, p

l
0...t−1)

p̂lt = argmaxk P(zlk|m1...t, p
u
0...t−1, p

l
0...t−1)

(5)

We introduce the powerful GPT model [11] to estimate the
action probabilities as shown in Figure 5. Given a dance position
code sequence with length of T ′, we first embed the upper and
lower pose codes to learnable features u ∈ RT ′×C and l ∈ RT ′×C ,
respectively, and concatenate them with music features m on the
temporal dimension. Then, we add a learned positional embedding
to this concatenated (3×T ′)×C tensor and feed it to 12 successive
Transformer layers, the structure of which is shown in Figure 5.
At last, we employ a linear transform and softmax layer to map
the output of Transformer layers to normalized action probability
a ∈ R(3×T ′)×N , where N is the size of learned codebook and
at,i reveals the probability of pose code zi ∈ Z predicted for time
t + 1. The action probabilities for upper and lower half bodies
are indexed as au0:T ′−1 = aT ′:2T ′−1 and al0:T ′−1 = a2T ′:3T ′−1,
respectively.

In Transformers [43], the attention layer is the core component
that determines the computational dependency among sequential
elements of data, and is implemented as

Attention(Q,K,V,M) = softmax

(
QKT +M√

C

)
V, (6)

where Q,K,V denote the query, key and value from input, and M
is the mask, which determines the type of attention layers. The most
two common types of attention are “full attention” [43] and “causal
attention” [43], where the former realizes the intercommunication
of input data at all times while the latter only allows the current
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Fig. 7: Contextual Music Encoding. In this encoding pipeline,
music features in 60 fps with a length of T + 2w are sampled
and fed into a cascade of Transformer layers. The attention of the
Transformer layer here aggregates adjacent music features within a
(2w + 1)-wide sliding window. The augmented features are finally
downsampled by an unshuffling operation [44] across the temporal
dimension.

and previous data to compute the state for the time of interest.
As our goal is to infer the future dance position codes, we adopt
the causal attention. However, since the generation of upper and
lower half bodies are dependent on each other, we cannot realize
the inference by just reordering the sequence of input to fit the
causality as previous works [39], [41]. Therefore, we propose an
attention layer, namely cross-conditional attention, to comply with
the causality cross conditioned among features of the music, the
upper half and the lower half bodies, where M is designed to be a
3× 3 repeated block matrix with a lower triangular matrix of size
T ′ as its element. As shown in Figure 6, the proposed attention can
exchange information of different components, and guarantee that
the future information will not be transmitted back to the past.
Learning Motion GPT. The motion GPT is optimized via
supervised training with the cross-entropy loss on action probability
a:

LCE =
1

T ′

T ′−1∑
t=0

∑
h=u,l

CrossEntropy
(
aht , p

h
t+1

)
. (7)

Given a sequence of pose codes p0:T ′−1 and relevant music
features m1:T ′ as input, the learned GPT outputs the sequence
of actions a0:T ′−1 all at once to predict p1:T ′ . This parallel
characteristic makes Transformer an ideal model for reinforcement
learning [45], [46]. In the following subsection, we adopt the
learned motion GPT as a pretrained policy maker and propose a
novel actor-critic based finetuning scheme to further improve its
performance as complementary to the supervised training above.

3.4 Contextual Music Encoding
Before choreographing based on the quantized dancing units, we
need to extract informative features from the input music signals to
serve as the condition for the proposed motion GPT. One approach
is to sample audio features from the music signals at the same
frequency as the pose codes, as in the original Bailando [13].
However, since the conditional motion prediction in Equation 5

only looks ahead one music feature at a time, this sampling method
can make the GPT short-sighted when it comes to future music and
prone to generating irregularities in the dance movement in the long
term, which does not align with the logic of human choreography.

To enhance the motion GPT’s understanding of long-term
melodies, we use contextual music encoding (CME) to augment
music features with context, as shown in Figure 7. Specifically, we
first sample audio features at the same frequency as the motion
sequence data (60 fps) and obtain features of the same length as the
motions. Then, for a piece of music with a length of T , we extend
its two ends by a length w from the original music. If we reach the
beginning or end of the music, we pad it with zeros. Next, we feed
the extended music features to a series of sequential Transformer
layers to conduct attention-based context augmentation, where the
Transformer layer is the same as the one detailed in Figure 5, except
for the attention layer. Since the purpose of CME is to exchange
information among contextual melodies rather than to infer the
future, the attention here is conducted among temporally adjacent
music features within a window. Specifically, the mask M in CME
is a banded matrix with a sliding window size of 2w + 1. Finally,
we perform temporal-wise unshuffling [44] on the music features
augmented by the Transformer with a downsampling rate of d to
obtain the final music features of length T ′, which is at the same
frequency as the pose code.

Our experiments show that the use of Contextual Music
Encoding (CME) has allowed the motion GPT to better predict
motion that matches the long-term patterns in music. For example,
when given a piece of music with a repeated melody, CME helps
the motion GPT to generate repetitive motions. In addition, CME
also helps to smooth out irregular changes in dance movements and
styles within a single dance, resulting in movement that is closer
to ground truth in terms of speed and kinetic characteristics. An
ablation study is provided in Section 4.2.

3.5 Actor-Critic Learning
While the supervised learning scheme for the motion GPT is
straightforward and easy to train, it is intractable to involve
further a more flexible constraint of generated dance (e.g., a
regularization item that strengthens the consistency of dance beats)
to Equation (7), since the supervision target is the code number,
which is not differentiable to compute the quantitative constraints
on the final dance sequence.

To address this issue and to achieve more accurate synchronized
alignment between diverse motion tempos and music beats, we
apply actor-critic learning to the motion GPT with a newly-designed
reward function. In particular, we regard the first 6 Transformer
layers of motion GPT as “state network” fs, and the outputs of fs
are states s for time 0 to T ′ − 1, while the latter 6 Transformer
layers along with the linear-softmax layer are regarded as “policy
making network” fa, where the actions are computed according
to state as a = fs(s). Besides, we add a separate three-layer
Transformer branch as “critic value network” fv to estimate the
critic values v0:T ′−1 ∈ RT ′×1 as

v = vu + vl = fv(s)T ′:2T ′−1 + fv(s)2T ′:3T ′−1. (8)

With the well-defined reward function R(t) = R(at, st), the
objective of reinforcement learning is to maximize the expected
accumulated rewards:

J = Eτ

T ′−1∑
t=0

R(t)

 , (9)
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where τ = {at}T
′−1

t=0 is the trajectories of actions predicted by the
policy making network. The learning objective can be reframed as

J(θ) = Eτ∼πθ(τ)[R(τ)] =

∫
πθ(τ)R(τ)dτ, (10)

where θ denotes the weights of the policy making network, τ
represents a string of actions and πθ(τ) is the probability that the
policy network predicts to take such actions.

One approach to maximize J is to optimize the network weight
θ along the gradient ∇θJ as θ ← θ + α∇θJ . Since

∇θπθ = πθ
∇θπθ

πθ
= πθ∇θ log πθ, (11)

we can rewrite ∇θJ into

∇θJ =

∫
∇θπθ(τ)R(τ)dτ

=

∫
πθ∇θ(τ) log πθ(τ)R(τ)dτ

= Eτ∼πθ(τ) [∇θ log πθ(τ)R(τ)] .

(12)

Note that τ = {at}T
′−1

t=0 is the trajectories of actions predicted on
states {st}T

′−1
t=0 , the probability of trajectory πθ(τ) predicted by

the policy making network is expanded to be
∏T ′−1

t=0 πθ(at, st),
where πθ(at, st) is the probability of action at under state st.
Hence,

∇θ log πθ(τ) =
T ′−1∑
t=0

∇θ log πθ(at, st) (13)

and we have

∇θJ = Eτ∼πθ(τ) [∇θ log πθ(τ)R(τ)]

= Eτ∼πθ(τ)

T ′−1∑
t=0

∇θ log πθ(at, st)

T ′−1∑
t=0

R(at, st)


= Eτ∼πθ(τ)

T ′−1∑
t=0

∇θ log πθ(at, st)

T ′−1∑
t′=0

R(at′ , st′)

 .
(14)

For on-policy reinforcement learning, ∇θJ is estimated on
simultaneously sampled sectional trajectories {(amt , smt )}M−1

m=0 ,
where M denotes the sampling batch size, such that the equation
above is approximated to be

∇θJ ≈
1

M

M−1∑
m=0

T ′−1∑
t=0

∇θ log πθ(a
m
t , smt )

T ′−1∑
t′=0

R(amt′ , s
m
t′ )

 .

(15)
Note that the optimization of the policy making network for policy
(amt , smt ) is not expected to be influenced by the past trajectories,
i.e., the rewards before t. Therefore, Equation (15) is reframed as

∇θJ ≈
1

M

M−1∑
m=0

T ′−1∑
t=0

∇θ log πθ(a
m
t , smt )

T ′−1∑
t′=t

R(amt′ , s
m
t′ )

 ,

(16)
where

∑T ′−1
t′=t R(at′ , st′) is the expected “reward to go” under

policy (at, st), which is formally named as the Q-value Q(at, st).

To avoid the bias of rewards, e.g., all rewards are positive,
the Q-value item in Equation (16) is normalized by an expected
“reward to go” on state st, i.e., the critic value vt = Eat [Q(at, st)],
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Fig. 8: Designed rewards. (a) Beat-align reward penalizes the
absence of dance beat for the interval that has music beat. (b)
Half-body consistency reward is computed on the angle between
normal directions of half bodies to prevent asynchronizations.

such that

∇θJ ≈
1

M

M−1∑
m=0

T ′−1∑
t=0

∇θ log πθ(a
m
t , smt ) (Q(at, st)− vt)

=
1

M

M−1∑
m=0

T ′−1∑
t=0

∇θ log πθ(a
m
t , smt ) (R(at, st) + vt+1 − vt) .

(17)

Examining Equation (17), if the normalized “reward to go” is
positive, to increase J , the policy making network will be optimized
to enhance the probability of action amt under state smt . In our
proposed framework, the actions are within finite selections of
the choreographic memory. Hence, the optimization along with
Equation (17) is equivalent to the optimization via a weighted
cross-entropy loss on the in-time self-predictions of the policy
making network:

LAC =

1

T ′ − 1

T ′−2∑
t=0

 ∑
h=u,l

CrossEntropy
(
aht , p̂

h
t+1

) · sg[εt],
(18)

where p̂ht+1 = argmaxi a
h
t,i is the pose code number predicted by

the policy making network. ε ∈ R(T ′−1)×1 denotes the so-called
TD-error calculated as

ε0:T ′−2 = r0:T ′−2 + sg[v1:T ′−1]− v0:T ′−2, (19)

where rt = R(t). Meanwhile, the critic value network is optimized
by bootstrap training on the difference between v0:T ′−2 and
R(at, st) + v1:T ′−1:

Lv =
1

T ′ − 1
∥ε∥22. (20)

The computation of actor-critic loss LAC depends on real-
time actions predicted by the motion GPT and the optimization
direction is determined on the value of TD-error. When εt is
positive, the optimization on LAC will intensify the convergence to
predicted code p̂t+1, while in the opposite situations, the probability
estimated for p̂t+1 will be reduced.

The value of TD-error and the learning effectiveness are
strongly influenced by the reward function R. In this work, we
design a motion-music beat-align reward to generate dance that
aligns more accurately with the rhythm of the music. As shown in
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TABLE 1: Quantitative results on AIST++ test set. The best and runner-up values are bold and underlined, respectively.
Among compared methods, “Li et al.”, DanceNet and FACT are multiplexing the same results of AIST++ benchmark [7], while
DanceRevolution [24] is reproduced using officially released code with the optimal settings. † FIDk and DIVk are fetched from [7] while
FIDg and DIVg are recomputed using the officially updated evaluation code. *The generated dances of “Li et al.” are highly jittery
making its velocity variation extremely high, which is also reported in [7].

Motion Quality Motion Diversity User Study

Method FIDk ↓ FID†
g ↓ Divk ↑ Div†g ↑ Beat Align Score ↑ Bailando++ Wins

Ground Truth 17.10 10.60 8.19 7.45 0.2374 66.5%±25.2%

Li et al. [30] 86.43 43.46 6.85∗ 3.32 0.1607 93.0%±13.8%
DanceNet [38] 69.18 25.49 2.86 2.85 0.1430 88.5%±13.5%
DanceRevolution [24] 73.42 25.92 3.52 4.87 0.1950 93.5%± 7.3%
FACT [7] 35.35 22.11 5.94 6.18 0.2209 90.5%±11.2%

Bailando 28.16 9.62 7.83 6.34 0.2332 78.0%±18.6%
Bailando++ 17.59 10.10 8.64 6.50 0.2720 –

Figure 8 (a), the beat-align reward is defined as

Rb(t) =

{
−1, ∃ music beat ∧∄ dance beats ∈ P̂td:(t+1)d

1, otherwise,
(21)

where P̂0:T−1 = D(p̂0:T ′−1) is the dance motion sequence
decoded from predicted dance position codes. Meanwhile, to avoid
the compositional asynchronization between upper and lower half
bodies during actor-critic learning, we introduce a compositional
consistency reward to impose penalties for situations where the
upper and lower body are in the opposite direction:

Rc(t) = inf
{
R̂c(t)

}
, t ∈ [dt, d(t+ 1)) , (22)

where

R̂c(t) =

{ 〈
nu

xz(t),n
l
xz(t)

〉
,
〈
nu

xz(t),n
l
xz(t)

〉
< 0

1, otherwise.
(23)

Here, nu
xz(t),n

l
xz(t) are the normal directions of upper and lower

bodies of P̂t projected to the x-z plane, which is illustrated in
Figure 8 (b). The final reward is then a weighted combination of
Rb and Rc as R = γbRb + γcRc.

In the finetuning process, we fix the parameters of state network
fs, and alternately train the policy making network fa and the critic
value network fv using the losses introduced above with a small
learning rate. After such finetuning, the proposed framework will
be further enhanced.

4 EXPERIMENTS

Dataset. We perform the training and evaluation on the AIST++
dataset proposed in [7], which to our best knowledge is the
largest publicly available dataset for paired music and motions.
This dataset contains 992 pieces of high-quality 60-FPS 3D pose
sequence in SMPL format [15], where 952 are kept for training
and 40 are used for evaluation.
Implementation Details. In this work, the choreographic memory
codebook size N for both upper and lower bodies is set to 512,
while the channel dimension C of encoded features is 512 and the
temporal downsampling rate d of encoders is 8. It is worthy to note
that N = 512 here is based on empirical observation. During the
VQ-VAE training, to avoid “index collapse” [39], where some codes
are never used in quantization, we track the usage of each code
and randomly reset it if it is not used for a period of iterations. In

our experiments, larger sizes (1024 and 768) cause frequent resets
during training, with considerable fluctuations in the loss, and result
in poorly restored motions. When N is 512, the loss decreases
consistently, and the Euclidean restoration error of VQ-VAE is
small on average (0.027, ∼ 5% of the length from neck to hip) and
not deviated (σ = 0.0064). Therefore, we regard N = 512 to be
suitable and adequate for the training set of AIST++. While training
the VQ-VAEs, dance data are cropped to a length of T = 240
(4 seconds) and sampled in a batch size of 32. The commit loss
trade-off β in LV Q is 0.1, while α1 and α2 in Lrec and LA are set
to be 1. Unless specifically mentioned, we use the rotation matrix
to represent the 3D joint angles as in [7]. We adopt Adam optimizer
[47] with β1 = 0.9 and β2 = 0.99 to train both pose VQ-VAEs
for 500 epochs with learning rate 3 × 10−5. As to the motion
GPT, we follow the structure mirroring minGPT [48], where the
channel dimension is 768, and the attention layer is implemented
in 12 heads with dropout probability 0.1. The music features
are extracted by the public audio processing toolbox Librosa [49],
including mel frequency cepstral coefficients (MFCC), MFCC delta,
constant-Q chromagram, onset strength, and tempogram which are
55-dim in total, and are mapped to the same dimension of GPT
by a linear layer after the contextual music encoder (CME). The
CME has three Transformer layers with the structure as shown in
Figure 5 in our experiments, and the window size parameter w is 44,
corresponding to a temporal length of about 1.5 seconds. The block
size T ′ of GPT is set to be 29. While training, the dance sequences
are first encoded to pose codes p and sampled to the length of 30,
where p0:28 are used as input and p1:29 are supervision labels. The
motion GPT is optimized using Adam optimizer with β1 = 0.5 and
β2 = 0.99 for 400 epochs, where the learning rate is initialized
as 3× 10−4 and decayed after 200 epochs with factor 0.1. In the
actor-critic finetuning process, we adopt a small learning rate of
1× 10−5 to learn fa and fv for 10 epochs. The reward trade-offs
γb and γc are 5 and 1, respectively. In our experiment, the pose VQ-
VAEs and the motion GPT are trained sequentially, and the weights
of VQ-VAEs are fixed during the learning process of GPT. The
whole framework is learned in four days on one Tesla V100 GPU.
During the test, the motion GPT takes a pair of starting pose codes,
which can be either manually indicated or randomly sampled, as
input and autoregressively generates the motion sequence as long
as the target music.

Evaluation Metrics. For quantitative evaluations, we measure the
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TABLE 2: Ablation study on pose VQ-VAE (3D joint position)

Method FIDk ↓ FIDg ↓
Ground Truth 17.10 10.60

w/o. upper/lower 41.21 15.85
w/o. global vel. 70.95 18.52
w/o. vel./acc. loss 30.91 11.87
full pose VQ-VAE (position) 28.23 12.63

generated dance from three perspectives: the quality of generated
dances, the diversity of motions and the alignment between the
rhythms of music and generated movements. In concrete, for
the dance quality, we calculate the Fréchet Inception Distances
(FID) [50] between the generated dance and all motion sequences
(including training and test data) of the AIST++ dataset on kinetic
features [51] (denoted as ‘k’) and geometric features [52] (denoted
as ‘g’), which are both extracted using the toolbox of [53]. As to
the diversity, we compute the average feature distance of generated
movements following [7]. Regarding the alignment between music
and generated motions, we calculate the average temporal distance
between each music beat and its closest dance beat as the Beat
Align Score:

1

|Bm|
∑

tm∈Bm

exp

{
−mintd∈Bd ∥td − tm∥2

2σ2

}
, (24)

where Bd and Bm record the time of beats in dance and music,
respectively, while σ is normalized parameter which is set to be 3
in our experiment.

4.1 Comparison to Existing Methods

We compare our proposed model to several state-of-the-art methods
including Li et al. [30], DanceNet [38], DanceRevolution [24] and
FACT [7]. For each method, we generate 40 pieces of dances in
AIST++ test set, and sample the generated dance sequence with a
length of 20 seconds to compute the evaluation metrics mentioned
above. We also calculate the quantitative scores for ground truth
data in AIST++ test set and compare it to the generated dances.

The quantitative results are shown in Table 1. According
to the comparison, our proposed model consistently performs
favorably against all the other existing methods on all evaluations.
Specifically, Bailando improves 7.19 (20%) and 12.49 (56%)
than the best compared baseline model FACT on FIDk and FIDg ,
respectively, and even achieves a better FIDg score than the ground
truth (9.62 v.s. 10.60). If we examine the metrics on these two
kinds of features, the kinetic feature is defined on motion velocities

and energies, which reflect the physical characteristics of dance,
while the geometric feature is defined based on multiple man-made
templates of movements, which reflects the quality of choreography.
The superiority of our method on both dance quality metrics reveals
that Bailando not only synthesizes more real-like motions than
the compared baseline methods, but also achieves outstanding
performance in organizing the movements to dance via the proposed
actor-critic GPT scheme with learned choreographic memory.
Meanwhile, Bailando can generate dance with high choreographic
diversity instead of converging to few templates, and also achieves
improvement on the correlation between music and motion.

Based on the original Bailando, the extended Bailando++ can
further improves the overall quality of generated dance Specifically,
the FIDk score of Bailando++ is improved by 10.57 (38%) from
Bailando, which indicates a significant boost in the quality of
synthesized motion. Meanwhile, the two metrics on diversity
increase 0.81 (9%) and 0.16 (3%) relatively. Although the FIDg

score of Bailando++ is slightly worse (0.48, 5%) than that of
the original Bailando, it is still better than the ground truth,
which indicates that Bailando++ still performs a high quality
of choreography. Besides, the generated dance movements of
Bailando++ are more coherent to the beat of music melodies, with
an improvement from 0.2332 to 0.2720 (14%). Visual comparisons
can be found in the supplementary video.
User Study. To further understand the actual qualitative perfor-
mance of our method, we conduct a user study on the dance
sequences generated by each compared method (including the
original Bailando) and the ground truth data in AIST++ test set.
The experiment involves 20 participants, aged from 22 to 30 at
the time of the study, while eight of them are female. For each
participant, we randomly play 60 pairs of comparison videos with
a length of around 10 seconds, where each pair contains our result
and one competitor’s in the same music, and ask the participant to
indicate “which one is dancing better to the music”. The statistics
are shown in Table 1. Notably, our method significantly surpasses
the compared state-of-art methods with at least 88.5% winning rate.
Even in comparison to the ground truth, 66.5% of our generated
dance is voted as the better in average. For the null hypothesis
“there is no difference between the results of Bailando++ and *”,
the p-value is smaller than 0.00001 as * represents every compared
method and is 0.010038 as to ground truth, which suggests this
hypothesis can be safely rejected for these comparisons.

The detailed distribution of the user study results on various
music types is shown in Figure 9. The results of our user
study indicate that our method, Bailando++, performs well across
different types of dance, with a particularly strong performance
in the lock dance category. The participants also noted that the
generated dances were more “stable to the rhythm” and had “higher
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TABLE 3: Ablation study on downsampling rate (d) in pose
VQ-VAE (3D joint position)

downsample rate d FIDk ↓ FIDg ↓
8 28.23 12.63
16 30.84 12.79
64 51.54 18.42

w/. hybrid training

w/o. hybrid training

Fig. 10: Visualization on the effectiveness of hybrid training.
Here we show the dance generation result of “foettes on pointe”
(spinning in place) with and without the hybrid training strategy
when trained on the 3D joint rotation data. If learned without the
hybrid training, the agent can only kick awkwardly and cannot turn
around. The red lines indicate the orientations of the agent.

diversity” compared to the state of the art. In comparison to
the original Bailando, Bailando++ was preferred by 78.0% of
the participants, demonstrating the significant improvement in
visual performance achieved through the use of contextual musical
encoding and the hybrid training strategy.

4.2 Ablation Studies
We conduct ablation studies on the pose VQ-VAEs and the motion
GPT, respectively. The quantitative scores are shown in Table 2, 4,
3, 5, and 6. The visual comparisons of this study can be found in
the supplementary video.
Pose VQ-VAE. We separately study the pose VQ-VAEs for the
two formats of synthesized motion. For pose VQ-VAE in 3D
joint positions, we explore the effectiveness of the following
components: (1) the up-lower half body separation, (2) the global
velocity prediction branch, and (3) the velocity-and-acceleration
loss used in Lrec. We train three variant models without each of
the three components, respectively. The motion quality measured
for VQ-VAEs is on reconstructed results of ground truth of AIST++
test set. As shown in Table 2, the FIDk and FIDg values for
variant “w/o. upper/lower” become worse by 12.98 (46%) and
3.22 (25%), respectively. The VQ-VAE trained on the whole body
cannot reconstruct the dancing pose of the test set effectively.
Therefore, the separate representations of upper-lower half bodies
are necessary to enlarge the range of poses that the choreographic
memory can cover. As to the global velocity branch, the motion
quality scores of “w/o. global vel.” sharply drops 42.72 (151%)
and 5.89 (47%), respectively, which shows the isolated velocity
prediction is critical for representing the dance movement. For “w/o.
vel./acc. loss” variant, the FIDk is worsened by 2.68. Although the
FIDg value of “w/o. vel./acc. loss” is slightly improved by 0.76,

TABLE 4: Ablation study on pose VQ-VAE (3D joint rotation)

Method FIDk ↓ FIDg ↓
Ground Truth 17.10 10.60
pose VQ-VAE (3D position) 28.23 12.63

w/o. hybrid training (rec.) 38.07 12.23
rotation matrix→rotation 6D 30.77 12.56
w/o. vel./acc. loss 31.34 12.63
full pose VQ-VAE (rotation) 29.36 12.51

the model produces strong motion jitters without adopting vel./acc
loss for training in the supplementary video. Besides, we explore
the influence of the downsampling rate d in VQ-VAE on the quality
of synthesized motions. As shown in Table 3, it becomes harder
for the VQ-VAE to represent the dance sequence when using larger
downsampling rates, which leads us to choose d = 8 as a proper
setting in our experiments.

As to the model for 3D joint rotations, we focus on the modules
that can boost the VQ-VAE to reach a comparable performance as
3D joint positions while synthesizing motion in the rotation format.
We explore the contribution of (1) the proposed hybrid training
strategy, (2) the representation of joint rotational angles, and (3) the
velocity-and-acceleration loss underLA. As shown in Table 4, if the
pose VQ-VAE is not trained through the proposed hybrid strategy,
the FIDk score drops sharply by 8.71 (30%). This poor base
on motion representation and reconstruction directly leads to the
low performance of subsequent choreographic results of the GPT,
which can be referred from ”w/o. hybrid training (cho.)” in Table 6.
Lacking of the hybrid training strategy causes non-standard dance
movements. As shown in Figure 10, for the model without hybrid
training strategy, the agent fails to turn around when doing “foettes
on pointe” but only kicks awkwardly (also see supplementary
video), while the one with hybrid training can perform normally,
suggesting the necessity of the proposed hybrid training strategy
for robust motion synthesis in 3D rotation format. Besides, we
compare the performances of two kinds of representation of 3D
joint rotations: the rotation matrix and “rotation 6D” [54]. The
“rotation 6D” is the first two rows of the 3 × 3 rotation matrix
and is shown to be more continuous for motion representation
than the rotation matrix in [54]. However, our experiment shows
that training the VQ-VAE in rotation 6D worsens the quality of
synthesized motion, where the FIDk and FIDg scores drop 1.41
and 0.05, respectively. This phenomenon is also consistent with
that observed in [7], where the rotation matrix is prone to produce
stabler performance in this task. A visual comparison of the results
of the two representations can refer to the supplementary video.
As to the “vel./acc. loss” that suppresses the jitters in 3D joint
positions, we find it also works in the training of joint rotations.
As shown in Table. 4, if training without this constraint, the two
FID scores drop 1.98 and 0.12, respectively, while apparent jitters
will occur in output motions of the pose VQ-VAE. This experiment
shows that constraining the first (velocity) and second derivatives
(acceleration) of the synthesized pose sequence is a generalized
way to reduce the generated jitters in generated movements for
both 3D position and 3D rotation formats.
Motion GPT. Similar to the VQ-VAE, we explore each module’s
contribution to the proposed actor-critic GPT for 3D positions and
3D rotations, respectively. For 3D positions, first, we explore the
effect of quantized choreography memory by training a variant
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TABLE 5: Ablation study on motion GPT (3D joint position).

Method FIDk ↓ FIDg ↓ BAS ↑
w/o. quantization 42.71 147.28 –
w/o. cross-cond. att. 37.41 15.52 –
w/o. CME w/o. actor critic 28.75 11.82 0.2245
w/o. CME (original Bailando) 28.16 9.62 0.2332
w/o. actor critic 20.89 10.18 0.2109
full actor-critic GPT (position) 17.66 11.30 0.2597

GPT directly regress to the encoding features of 3D joint sequence
via an L2 Loss. As shown in Table 5, the FIDg drops 135.41 for
variant “w/o. quantization” (compared to “w/o. CME w/o. actor
critic”, same below), while the generated dance sequences contain
frequent jitters in vision, which shows the quantization of dancing
positions is essential to our proposed framework. Second, to test
the effectiveness of the proposed cross-conditional causal attention,
we substitute it to causal attention, and train two motion GPTs
for upper and lower half bodies separately. The motion quality
scores of “w/o. cross-cond. att.” drop 8.66 (30%) and 3.70 (31%)
(compared to “w/o. CME w/o. actor critic”), respectively. The main
reason for the poor performance is that the generated dances of
contain frequent asynchronization of upper and lower half bodies,
while the proposed cross-conditional attention layer can effectively
prevent such situations via the interaction of information between
the half bodies.

Next, we evaluate the effectiveness of contextual music en-
coding by training a variant of the model that directly samples
music features into the same frequency as pose codes and feeds
them into the GPT without using CME. As shown in Table 5,
the FIDk score for this variant is significantly worse than the full
actor-critic GPT for 3D positions, with a 59% decrease to 10.50.
In contrast, the full actor-critic GPT performs close to the ground
truth, with a FIDk score of 17.66 compared to 17.10. The kinetic
feature, which consists of motion velocities and energies, is affected
by this change, indicating that contextual augmentation of music
features can improve the GPT’s ability to generate movements
that are more physically realistic. In addition, we observe that
CME leads the GPT to produce smoother movements by reducing
irregular motion changes and choreographing repetitive movements
for repeated melodies (see supplementary video). These results
demonstrate the critical role of long-term understanding of music
in synthesizing human-like movements in dance generation. At
last, we compare the motion quality and music-motion consistency
between the model with (denoted as “full actor-critic GPT”) and
without actor-critic finetuning (denoted as “w/o. actor critic”). After
the actor-critic learning, the beat-align score (BAS) of motion GPT
increases from 0.2109 to 0.2597, proving the effectiveness of
the reinforcement learning scheme with the proposed beat-align
reward. Meanwhile, by constraining the consistency with music,
the actor-critic finetuning process can also enhance the motion
quality on choreography and saliently improves the FIDk score by
3.23 (15%).

For 3D rotations, first, we study the influence of the hybrid
training strategy on the choreography of motion GPT. Specifically,
we train a GPT based on the learned quantized codebook of “w/o.
hybrid training (rec.)” in Table 4. As shown in Table 6, without
hybrid training, the motion quality scores of choreographic results
degrade to 39.09 and 13.66, respectively, with significant drops of

TABLE 6: Ablation study on motion GPT (3D joint rotation).

Method FIDk ↓ FIDg ↓ BAS ↑
w/o. hybrid training (cho.) 39.09 13.66 –
w/o. CME 28.29 12.71 0.2437
w/o. actor critic 20.88 10.09 0.2264
full actor-critic GPT (rotation) 17.59 10.10 0.2720

D

D
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p1,p1

Fig. 11: Interpretability of choreographic memory code. The
sequence of a single code is decoded to a static pose, while the
sequence of two various codes is decoded to a smooth transition
between two poses, which means each code represents a dancing-
style pose and the decoder links poses of different codes to
movements.

21.50 (122%) and 3.56 (25%) from the GPT trained with full pose
VQ-VAE; even worse, Bailando will degenerate to the point where
it is worse than FACT [7] (FIDk: 39.09 v.s. 35.35). Moreover,
When training motion GPT, dance motion sequences need to be
encoded and quantized to code numbers as the regression target of
GPT. This is because the 3D rotation format has spatial ambiguity,
as discussed in Section 3.2, which can cause different poses to be
clustered in one code, making it harder for the GPT to learn the
laws of choreography from the codebook summarized from 3D
rotation data. This results in a relatively lower FIDg compared to
the complete model (13.66 v.s. 10.10). Therefore, the proposed
hybrid training strategy is necessary not only for the reconstruction
quality of the pose VQ-VAE, but also for the final choreographed
dance of the motion GPT In addition, we also separately test the
effects of contextual music encoding and actor-critic learning on
the GPT for 3D rotation outputs, following the experiments for 3D
positions. As shown in Table 6, when CME was removed, FIDk

and FIDg dropped by 10.70 (60%) and 2.61 (26%), respectively,
while omitting actor-critic learning resulted in a 0.0456 (17%)
lower BAS. These results are similar to the conclusions drawn from
the corresponding ablation experiments. Therefore, we can draw
the same conclusions on the usefulness of these two parts as those
for 3D positions.

4.3 Interpretability of Choreographic Memory
In this work, we propose to summarize meaningful dancing
units into the codebook via pose VQ-VAE in an unsupervised
manner. To understand what kind of dance unit is learned in the
choreographic memory, we visualize the latent codes and find each
code represents a unique 3D dancing-style pose. As revealed in
Figure 11, the first and the second rows are 3D poses decoded
from p0 = [4, 4] and p1 = [5, 5], respectively, where the former
one is doing right leg lifting and the latter is right bicep curl. The
decoded pose will keep static for repeating codes, and will make a
smooth transition between postures of different codes. As shown
in the third row of Figure 11, the decoded 3D poses of [p0,p1]



13

starts with the posture of p0, while gradually putting down the
leg and blending the arm towards the pose of p1. Furthermore,
for an arbitrary combination of learned choreographic memory
codes, the decoders can synthesize fluent movement based on
the represented dance positions, which can be observed in the
supplementary video. With such characteristics, the choreography
process becomes interpretable in proposed Bailando as a process
of selecting and sorting the quantized dance positions from the
learned choreographic memories, instead of a black box as in most
previous works.

4.4 Comparison to EDGE [37]
We conduct a comparative experiment to EDGE, a denoising-
diffusion-based dance generation pipeline. We follow the same
experimental setting as all other compared methods, where we
generate 40 dance sequences in AIST++ test set using the official
code [37], and sample each of them to a length of 20 seconds.
When computing the local minimum of motion magnitude as
needed by BAS, since the output frame rate of EDGE is 30 fps,
we duplicate its frames to 60 fps to align with the same hyper-
parameter in Equation 24 as other methods. The FIDk, FIDg , DIVk,
DIVg and BAS of EDGE are 77.56, 55.12, 6.55, 2.20 and 0.2488,
respectively. We also conduct a separate user study to compare the
performance of Bailando++ and EDGE by 25 participants. The
wining rate of Bailando++ is 56.4% in average, with 19.2% of
standard deviation and [48.3%, 64.5%] of the 95% confidence
interval. Based on the experiment, Bailando++ achieves higher
quantitative scores while performing a comparable visual quality
based on the user study. A visual comparison can be found in the
supplementary video.

5 DISCUSSION AND CONCLUSION

In this paper, we address the spatial and temporal challenges of
3D dance generation by proposing a novel framework named Bai-
lando++, which is composed of a choreographic memory to address
the spatial constraint by encoding and quantizing dancing-style
poses, and an actor-critic GPT to realize the temporal coherency
with music that translates and aligns various motion tempos and
music beats. Experiments on the standard benchmark (i.e., AIST++
dataset) along with user studies show that Bailando achieves state-
of-the-art performance both qualitatively and quantitatively.
Quantitative Metrics vs Subjective Evaluations. Although EDGE
does not achieve satisfactory quantitative scores (FID and Div), it
demonstrates significantly more appealing performance compared
to other state-of-the-art methods in the subjective user study, which
is also acknowledged in [37]. To analyze this phenomenon, we
provide a discussion on these two metrics and their limitations
that result in inconsistencies with subjective evaluations. First,
FID is a commonly used metric in generative tasks to quantify
the dissimilarity between the distribution of generated data and
the real data. When examining the distribution of AIST++, a
significant portion of the dance sequences exhibits an organized
choreography consisting of repeated basic motion units within
each sequence, while maintaining distinct motion patterns across
different sequences. Given this characteristic, achieving satisfactory
FID scores on AIST++ necessitates that the generated motion also
possesses distinct and unique inter-sequence motion patterns. From
a generative standpoint, this requirement aligns with the expectation
that generated results should adhere to the same distribution as the
source training data. However, if a model tends to choreograph in

freestyle, a dance may incorporate hybrid incomplete motion units
and casual movements within one sequence. Such choreography can
present intense and vibrant movements, which gives an advantage
in the pairwise comparisons during the user study, but will make
the distribution of generated motion deviate from that of AIST++
data, since each sequence lacks a distinct pattern after taking an
average of features in a long term. To address this limitation of
solely relying on FID, future works can consider incorporating
metrics derived from subjective user studies, as discussed in [37],
to provide a more comprehensive evaluation. Besides FID, we
compute the Div (Diversity) metric in this work, following the
settings of AIST++. Specifically, we extract motion features for
each frame within the first 20 seconds of each generated sequence
and calculate the average over this duration to represent the feature
of the sequence. In contrast, the metrics in [7] are computed on
the first 5 seconds for feature calculation. Using a longer averaging
duration emphasizes the need for independence of movements
across sequences. If motion patterns appear frequently across
sequences, even if the intra-sequence movements appear diverse,
the inter-sequence features over the longer duration can become
similar, resulting in lower Div scores. In our experiments, EDGE
achieves a Divk score of 6.55. However, if we only consider
the first 5 seconds of motion, as done in [37], this value would
significantly increase to 10.32. Therefore, the current metric setting
prioritizes dissimilarity between sequences over a longer duration,
aiming to capture distinct inter-sequence characteristics.
Limitation on Music in the Wild. Although our method can be
extended to dances with music in the wild, as demonstrated in the
supplementary video, addressing the domain gap between AIST++
music and wild ones requires on-policy reinforcement tuning to
achieve satisfactory results. Integrating a robust music encoder
originally trained on wild music, such as Jukebox [39] into the
system can serve as a strong acoustic prior for broader applications,
as shown in [37].
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